

Texas Instruments Software

ENABLING SOLUTIONS WITH DSDC & TI PARTNERSHIP

Presented By: Joseph A. Ghattas

Government Solutions

jagz@mimi.ti.com

Agenda

- Comprehensive Solution
- Paternship for Solution Delivery
- Pathfinder Approach
- Open Discussion

Comprehensive Solution

Infrastructure

- Strategic Planning and Implementation Road Map
- Development Coordination

Process

- Business Process Engineering
- Development Methodologies
- Transition Engineering
- People / Resources
- Tools

Enterprise Information Architecture

30 May, 1996

• COTS/GOTS Integration

Business Process Engineering

Fundamental analysis and radical redesign of business processes and related areas.

Align all resources to meet the needs of the **customer**.

Success requires a holistic approach.

Adapted from Dr. Michael Hammer's Reengineering Diamond

Composer Approach

Full Life Cycle

Development and maintenance

Model Driven

- Focuses at business level
- Consistent objects, terminologies, and Methodologies

Platform Independent

- Model is developed independent of target environment
- Multiple environments supported for development toolsets and Application targets.

Scalable

- Easy to change target environments (e.g., Windows 3.1, HP/UX, MVS, stand alone, Client/Server)

• Fully Integrated

Alternative Development Life Cycles

Composer Architecture

Workstation Toolsets

- Used for model development
- Planning, Analysis, Design, Construction (100% code generation)
- Seamless Connectivity to encyclopedias

Encyclopedias

- Model repository
- Allows concurrent development activites on a model
- Two types
 - Central Encyclopedia (CE) MVS Host
 - Client/Server Encyclopedia (CSE) Midtier (e.g., HP/UX)
- Implementation Toolset (IT)
 - Builds appliation executables for a target environment

Composer Development Environment

Model-Driven Development

Accurately reflects the business

- Quickly respond to change
- Conceptualize complex problems
- Consider business alternatives without constraints of technology
- Consistently build, install, test, modify and enhance the business application

Client / Server Styles

Remote Presentation

Remote Data

Distributed Process

WEB Process

Composer Summary

- Model-Driven Development and Maintenance
- Fully Distributed Applications
- 100% Generation of Application
 - Client
 - Server
 - Database
 - Communications Protocol
- Advanced GUI Design and Construction
- Platform & Database Flexibility
- Extended Communications Infrastructure Pipes
- Scalable Open Architecture
- Internet Client Access

Texas Instruments Software

Full Lifecycle Support

TI Common Architecture

Conceptual

Deployment

Disciplines

IDEF

BPR

Version Control

Data

Administration

MIL-STD-498 DoD 8020 DoD 8320

Standards

ΙE

SEI

CMM

Object & Component Reuse

Software

Reuse

GUI/CS

Multiple Platforms OSE - TAFIM

Infrastructure

Methods

Model Management

Transition Engineering

Communication Protocols; PIPES

Tools

Central Encyclopedia / Client/Server Encyclopedia

Software Process

Improvement

Transition Solutions Process

"Create flexible, responsive business applications from troublesome legacy systems"

14

Focus:

Derive business model from legacy system Extract business rules Derive value from reuse of existing components

Problems with the Typical Response

- "Big Bang"
 - Risk
 - Cost
 - Time
- Survival of Current system

• No contingency plan

__ Incremental and Orderly Transition in Response to Change

Transition Scenarios

Current Environment

Transition Engineering Solution

- Planning -- Inventory, Scope & Understand Legacy Systems to Develop Transition Approach
- Analysis -- Identify & Recover Legacy
 Components for Process and Data Models & Business Rule Tracing
- Implementation -- Release Management Activities to Implement Changes to Legacy System Components

The Transition Solutions Process-

Reuse and coexistence

Legacy Coexistence

Incremental delivery

Business Demand for Systems

- Cost of Ownership
- Best of Breed

CBD Getting Ahead of the Curve

Component-Based Development

Radical Development Time Reduction

Plug and Play

■ Extensive Reuse

Enablement of OO techniques

So, What is a Component?

An independently deliverable package of defined services

Every Component has:

A specification

An interface

An implementation design

Executable software module(s)

Not all have to be delivered together to have value

Component XYZ

IE Market Characteristics

OO Features

Generic Types

Polymorphic Behaviour, Inheritance

Encapsulation & Interfaces

Modular Programming

Proprietary, closed repositories, weak tool integration, developers only

Distributed, open repositories, design and analysis tools

Extensible repositories, runtime tools, integrated with prog. envs.

Model Based Development Features

The Opportunity!

- Exploit existing software components with Arranger
- Embrace the Component
 Based Development
 Architecture
- Establish an internal Software Factory

Key Component Methodology Features

- Builds on Existing OO and IE Methods
- Automatable
- Strong Component Orientation
- Formal Refinement Process
- Rigorous Component Protocol Modeling
- Supports OO and Non-OO Development Environment

Application Development FUTURE PROOFING

Terminal To Host

Terminal "owned" by host All "instructions" from host

Workstation independent of server Client code not independent of server code

Architecture Evolution In Progress

■ Terminal to host

- Terminal "owned" by host
- All "instructions" from host

■ Workstation to server (Client/Server)

- Workstation independent of server
- Client code not independent of server
- Software distribution a major issue
- Client environment a major issue

■ "Web-model" to server

- Resolves most "client/server" issues
- Retains GUI and distribution of services
- Application writer not concerned about client
- Intimate client/server development evolves to anonymous
- Client independent from host/server

Internet for the Enterprise TM

3 Steps To The Internet

TI Services: Objectives

- Technology Transfer
- Ultimate Source of COMPOSER Technical Expertise
- Successful System Deployment
- Customer Self-Sufficiency

TI Services : Training

- COMPOSER Client Server Development Principles
- C/S Encyclopedia Overview & Subsetting
- Host Encyclopedia: Version Control
- Rapid Skills Development Workshop
- Building GUI Applications
- COMPOSER Project Management
- COMPOSER Development Coordination
- BPE Practitioner's Workshop

TI Consulting Services

- Project Planning & Scoping
- Project Assessment
- Business Process Engineering
- BAA Facilitation/Requirements Gathering
- Client Server Design & Development
- COMPOSER Rollout/Implementation Planning
- COMPOSER Development Coordination
- Legacy System Reengineering

Development Coordination

- Information Resource Administration
- Architecture Management
- Development Planning
- Project Management
- Encyclopedia Administration
- Model Management
- Version Control
- Configuration Management
- Change Control
- Release Management

Composer: How to Get Started

- Enterprise Rollout: Roadmap Project
 - Management of Implementation
 - Organizational Learning
 - Tools & Methods
 - Architectures & Strategies
 - Databases & Applications
- Pathfinder Project: 3 5 Months
 - ◆ Just-in-Time Training
- Benchmark: 1 2 Weeks

Pathfinder Projects

- 3 to 5 Month Duration
- 10 to 12 Team Members
- Managed to Success
- Full Lifecycle Education
- Full Time Consulting Support
- Key Objectives:
 - Demonstratable/Implementable Results
 - Establish Internal Expertise
 - Develop Initial Infrastructure and Standards

Elements of Project Success

- Management Commitment
- Well-Defined Project / Scope & SOW
- Project Schedule Aggressive, But Achievable; Progress Monitored; Early Results
- Team Members Experienced, Trained & Motivated; Just In-Time Training
- Users/Owners of System are Part of Team & Able to Make Decisions On-the-Spot
- Incremental & Continuous Delivery -- Success is Contageous

Sound Implementation Planning